
1 

Interbank Debt Contagion and Financial Network Solvency1 

Jian Zhang2 
Economic and Policy Analysis Division 

The Office of the Comptroller of the Currency 
The U.S. Department of the Treasury.  

Email: Jian.zhang@occ.treas.gov 

Abstract 

I develop a stochastic model to analyze banks’ default status in the network and network 
stability. I set up the loan creation rate and loan removal rate, coupled with the endogenous bank 
default rate in the model, to analyze the trajectory of surviving banks in the system. For both 
short-term and long-term equilibriums, I use a debt exposure Markov matrix to analyze solvency 
thresholds. I prove that my Markov process is ergodic and has a unique invariant stationary state. 
My shortest path algorithm demonstrates the efficacy of mitigating risk exposure in the network. 
Finally, I use Bank for International Settlements data to demonstrate the applicability of my 
model.

JEL Classification Numbers: G32, D85, E44, F34, G15, F15 
Keywords: financial network, network contagion, interbank lending, systemic risk 

1 The views expressed in this paper are those of the author, do not necessarily reflect the views of the Office of the 
Comptroller of the Currency, the U.S. Department of the Treasury or any federal agency, and do not establish 
supervision policy, requirements or expectations.   

2  The author appreciates helpful comments and suggestions by Stephen Kane of Commodity Futures Trading 
Commission, Simpson Zhang, Nicholas Tenev, Florentin Butaru and Pierre Norbert of the OCC.  The author also 
thanks the participants of the OCC Economics Speakers Series Meeting held on October 15, 2020 and January 6, 
2021 for helpful comments and encouragement.   

mailto:Jian.zhang@occ.treas.gov


2 

1. Introduction

Rapidly developing technology enables economic connectivity between financial institutions 
across geographic locations simultaneously, instantly, and inexpensively in global capital 
markets. High connectivity and interdependency between banks and financial institutions create 
a massive, complex financial network regionally and globally. Banks have become more reliant 
than other sources of global funding in the low interest rate environment, especially for financial 
institutions in advanced economies. Interbank lending or borrowing, or debt or equity financing, 
may result in the contagion effect if one or a few banks fail in the financial network system. 
Lehman Brothers’ collapse in the 2008 global financial crisis triggered the height of the financial 
turmoil. In April 2021, the Archegos collapse cost Morgan Stanley $911 million, Nomura $2 
billion, and Credit Suisse $4.7 billion3 , and the losses are still growing as the ripple effect 
spreads further. Unceasing and devastating financial crises push researchers to examine the risks 
generated by an interdependency network. Adverse shocks can come from anywhere in the 
network system; e.g., they can come from the banking sector internally via interbank lending 
channels. They can be sparked from the collapse of the asset side or liability side of a bank’s 
balance sheet, or can be caused by failure of a bank’s counterparties via direct or indirect 
interdependency. They can also come from a non-bank financial institutions (NBFIs) externally 
via debt or equity financing channels. 

 One of the key deficiencies of measuring the financial risks before the global financial 
crisis is the computation of risk measures at the individual firm level or at the aggregate level 
without considering interdependency of debt exposures between banks. For example, a portfolio 
of AA bonds may be as risky as a portfolio of A bonds if AA bonds are positively dependent. 
(Gouriéroux et al. 2012, Cifuentes et al. 2005). Collateralized loan obligations (CLOs) are 
another example. CLOs are securities backed by a pool of loans and are repackaged and sold to 
different investors. CLOs are structured in tranches with different priorities in terms of the cash 
flows from the underlying assets. However, investors may have less or asymmetric information 
for the underlying assets than issuers. In particular, the interdependency of the underlying assets 
of a CLO may not be taken into account by both issuers and investors. To mitigate the systematic 
risk, Basel III was implemented in 2009. It requires banks to maintain appropriate leverage ratios 
and hold certain levels of reserve capital. However, it is difficult to measure a mixed portfolio 
with different rating scales, and Basel III is still far from sufficient to mitigate all these potential 
risks.  

How can we develop a strategic approach to identify vulnerable banks in the whole 
network system? How do we quickly identify the first failure bank and the first wave of the 
cascade failure in a network system? What is the short-term and long-term steady state equilibria 
for the banking sector? From an individual bank’s perspective, how can it choose an optimal path 
to minimize debt exposure risk? All these questions can shed light for policy makers and banking 
regulators in mitigating the contagion effect and solvency risk in order to maintain financial 
stability.  

In this paper I develop a novel dynamic stochastic model that provides new insights and 
can catch interdependent debt exposures in both short-term and long-term market equilibria for 

3 Financial Times, Stephen Morris, “Morgan Stanley reports $911m Archegos losses,” April 16, 2021.
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the banking sector. This paper’s results show that there exists a long-term steady state 
equilibrium in the network system. The number of surviving banks in the network system is non-
linear and non-monotonically associated with network density. The model can identify who fails 
first, the cascade sequence, and the shortest path of investment in the network. 

There are three novel contributions in this paper. First, unlike most traditional approaches 
in financial network stability literature, I use stochastic models to estimate debt exposure and 
sovereign risks of the banking system. I build a stochastic model by considering the rate of 
creating new loans, the rate of removing the existing loans, and endogenous bank default rate, 
and how the changes of these rates affect banks’ balance sheets. The stochastic master equation 
catches the dynamic movement of banks’ solvency paths in the short-run and long-run steady 
state equilibrium, and the model estimates the total number of surviving banks over time in the 
network. 

The second key contribution of this paper is to employ Markov chain theory to estimate 
the long-term steady state of the network. Markov chain theory assumes that a bank’s next status 
does not depend on its status in the past, but only on today’s status. The Markov chain model 
provides us the long-run debt exposure of each bank in the network. If we say that Markov chain 
models forecast the future of debt exposure for us, then the third shortest path algorithm tells us 
the short-term strategy of each bank. The third main contribution of the paper is to use the 
shortest path algorithm in the network to estimate the optimal investment paths or minimal debt 
exposure.  

Solvency risk is present everywhere within a network system. Banks can lend or borrow 
with each other via debt financing channels, or holding other banks’ equities via equity finance. 
Both debt finance and equity finance affect associated banks’ balance sheets. Each bank has its 
own balance sheet’s characteristics, connectivity, and asset size position in the network system. 
A failure of a bank due to an adverse funding shock or credit shock would result in a knock-on 
effect on other associated banks. In the short run, this shock’s initial impact may concentrate 
among limited banks that link with the defaulted bank. In case these linked banks perish, the 
previously unaffected banks are brought into the front line of contagion with increased danger of 
premature liquidation of long-term assets and the associated loss of value. In the long run, failing 
banks will no longer exist in the network, and the surviving banks’ asset or equity share may 
converge to a long-term steady state equilibrium. 

The literature has made significant progress in analyzing and modeling interbank network 
systems, especially after the 2007–08 global financial crisis. One group of researchers, Erdös and 
Rényi (1959), Eboli (2007), Song et al. (2014), Eisenberg and Noe (2001), Elsinger et al. (2013), 
Soramäki et al. (2006), and Bech and Atalay (2010) employ theoretical mathematic models or 
topology theory to analyze interdependency and connectivity of bank failure, and these models 
provide a solid foundation for empirical studies. Another school of researchers, Chan-Lau 
(2010a, 2010b), Minoiu and Reyes (2011), Espinosa and Sole (2014 2014), Furfine (1999), Iyer 
and Alcalde (2006), Nier et al. (2007), Sheldon and Maurer (1998), Degryse and Nguyen (2004), 
Wells (2002), Degryse et al. (2009), and Almeida (2015), employ a balance sheet approach to 
analyze country-level debt holding and exposures; in particular, the risk transmission channels of 
bank failure across borders. 
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Another stream of literature on financial risk, Diamond and. Dybvig (1983), Allen and 
Gale (2000), Elliott et al. (2014), Anand et al. (2012), Freixas et al.(2000), Glasserman and 
Young (2016), Gofman (2017), Gai and Kapadia (2010), Gai et al. (2011), Aldasoro et al. 
(2016), Drehmann and Tarashev (2013), Rochet and Tirole (1996), Song et al. (2014), Ghamami 
et al.(2019), Anderson et al. (2019), Calomiris and Carlson (2017), Nier et al. (2007), Leitner 
(2005), and Haldane (2009), analyzes financial contagion from a theoretical perspective. They 
analyze the relationship of network structure and banks’ solvency risk, and conclude that the 
financial network systems exhibit a robust yet fragile tendency; that is, within a certain range, 
interbank density connectivity serves as shock absorbers and mitigates the amplifying effect of 
the shock. However, beyond a certain range, interconnections start to serve as a mechanism for 
propagation of shocks.  

This paper is most closely related to empirical studies of contagion: Elliott et al. (2014), 
Gai and Kapadia (2010), Gouriéroux et al. (2012), Acemoglu et al. (2012, 2015), and Anand et 
al. (2012). Acemoglu et al. (2012) argue that from a social planner’s perspective, moderate 
shocks corresponding with a perfectly diversified pattern of cross-holdings may be optimal, 
while very large shocks with perfectly diversified holdings may be the worst scenario. Gai and 
Kapadia (2010) conclude that large shocks may have devastating consequences, and a shock’s 
impact varies depending on where in the network it hits and on the connectivity of the network. 
Elliott et al. (2014) further extend Gai and Kapadia (2010) with Acemoglu et al. (2015) by 
focusing on a moderate shock, which has not been well quantified in previous literature, and 
argue that intermediate levels of cross-holdings integration4 and diversification may be 
problematic. They focus on how a bank’s cross-holdings equity debt exposure is held within the 
banking networks or outside the banking networks (final investors) and what the distribution of 
debt exposure is within banking networks. Anand et al. (2012) focus on how bad news can lead 
banks to lose confidence and withdraw their deposits or lending, in turn triggering bank failure in 
the financial network.  

Based on their seminal studies, I develop the network model to analyze the cascades of bank 
failures in the banking system. The model examines how the change of equity cross-holdings 
share interacts with bank failure under adverse shocks. I further extend the model by using the 
Markov chain process to predict the long-term network steady state equilibrium. 

I take up this challenge by introducing a Markov chain stochastic process to analyze both 
short-term and long-term network steady state debt exposure equilibrium and to estimate the 
minimum path using a shortest path algorithm. These analytical methodologies or approaches 
may open other new territory in analyzing financial networks.  

 

2. Banking Sector Theoretical Network Model 

2.1. Balance Sheet of Banking Sector  

 
4 According to Elliot et al. (2014), integration refers to the level of exposure of firms to each other—how much of a 
firm is privately held by final investors, and how much is cross-held by other organizations. Diversification refers to 
how spread out cross-holdings are: Is a typical firm held by many others or by just a few? 
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The economy has three dates (t = 0,1,2) and there is no discounting.  As shown in Equation 1, 
matrix 𝑽𝒊𝒋 represents the market value of total equity of bank i with its counterparties, with all 
elements 𝑎𝑖𝑗  ∈ {0,1}.   

(Equation 1)   𝑉𝑖𝑗 = [

𝑎11 ⋯ 𝑎1𝑗
⋮ ⋱ ⋮
𝑎𝑖1 ⋯ 𝑎𝑖𝑗

] = (𝑎𝑖𝑗) ∈ ℝ
𝑖 𝑥 𝑗    

𝑎𝑖𝑗 represents bank i's claim on bank j, and the sum of the share of bank i’s claims across all its 
counterparties and its primitive assets equals 1, 

(Equation 2) ∑ 𝑎𝑖𝑗 = 1𝑗 .  

(Equation 3)   𝑉𝑖,𝑡 = ∑ 𝑨𝒊𝒌,𝒕𝒑𝒌,𝒕 + ∑ 𝑬𝒊𝒋,𝒕𝑽𝒋,𝒕𝒋,𝒕𝒌,𝒕 + 𝑄𝑖,𝑡         

In Equation 3, the value of each item represents its value at time t. 𝑨𝒊𝒌 denotes the share of the 
value of asset k held by bank i, 𝒑𝒌 is the market price of asset k held by bank i. We assume asset 
k is a long term asset. For simplicity, we assume that bank i only has one non-liquid asset k.  

The first item of equation 3, ∑ 𝑨𝒊𝒌,𝒕𝒑𝒌,𝒕 𝒌,𝒕  is the sum of equity value held by the bank’s 
counterparties.  𝑬𝒊𝒋 is the fraction of bank j’s claim on bank i.  𝑉𝑗 represents assets held by bank 
j. The second item,  ∑ 𝑬𝒊𝒋,𝒕𝑽𝒋,𝒕𝒋,𝒕  represents the sum of payment obligation of bank i to other 
counterparties. For any 𝑖, 𝑗 ∈ 𝑁, 𝑬𝒊𝒋 ≥ 0, where 𝑬𝒊𝒊 = 0 for each bank i. If bank i has a positive 
claim on bank j, then 𝑬𝒊𝒋 > 0. Let 

(Equation 4)  �̂�𝒊𝒊 = 𝟏 − ∑ 𝑬𝒋𝒊𝒋∈𝑵  ,  

where �̂�𝒊𝒊 represents the fraction of the asset value of bank i that is owned by outside 
shareholders.  Total equity value 𝑉𝑖 of bank i equals its own primitive assets plus its counterparts 
claims on itself  and its liquid asset 𝑄𝑖. A liquid asset can be cash or other cash equivalent asset, 
such as treasury bills. We assume price of liquid assets  

(Equation 5) 𝑝𝑖,𝑡 = 1,  before bank i experiences any stress. 

At time 0, equation 3 can be written as:      

(Equation 6)   𝑉𝑖,𝑡=0 = ∑ 𝑨𝒊𝒌,𝒕=𝟎𝒑𝒌,𝒕=𝟎 + ∑ 𝑬𝒊𝒋,𝒕=𝟎𝑽𝒋,𝒕=𝟎
𝒋,𝒕=𝟎𝒌,𝒕=𝟎

+ 𝑄𝑖,𝑡=0 

Following Elliott et al. (2014), I set off-diagonal entries of the matrix �̂� to 0. Bold font stands for 
a vector or matrix.  Equation 3 can be written in matrix notation as  

(Equation 7)   𝑽 =  𝑨𝒑 + 𝑬𝑽 + 𝑸                          

Rearrange Equation 7, and we get 

(Equation 8)    𝑽 = (𝑰 − 𝑬)−𝟏(𝑨𝒑 +  𝑸)           

Briosch et al. (1989), Fedenia (1994), and Elliott et al. (2014) argue that the “market” value of an 
organization can be captured by the equity value of this organization that is held by its outside 
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investors. �̂�𝑖𝑖 denotes this fraction of remaining shares held by outside investors, and this portion 
is outside the interbank network system. At time 0, if  

(Equation 9) �̂�𝑖𝑖 = 0, then bank i has no outside shareholders and bank i is a holding company. 
The market value 

(Equation 10)  𝑣𝑖 = �̂�𝑖𝑖𝑉𝑖,  therefore 

(Equation 11)  𝒗 = �̂�𝑽 

(Equation 12)  𝒗 =  �̂�(𝑰 − 𝑬)−𝟏(𝑨𝒑 + Q)      

 Let (Equation 13)  𝐹 =  �̂� (𝐼 − 𝐸)−1 and substitute it into Equation 12, and this yields 

 (Equation 14)   𝒗 = 𝑭(𝑨𝒑 + 𝑸)  

I define F as the debt exposure matrix, and define the total share values of bank i’s claims on all 
its counterparts and its own underlying assets as equal to 1. That said, for all 𝑗 ∈ 𝑁, we have 
(Equation 15) ∑ 𝐹𝑖𝑗 = 1𝑖∈𝑁 .  

We assume that F matrix is always an N by N square matrix, the number of rows equal to the 
number of columns.  

2.2 Equilibrium, Disequilibrium, and Multiplicity 
 
A bank may suffer unexpected internal or external adverse shocks; when total values of a bank 
fall below certain critical thresholds, the bank has to go through a liquidation process and these 
discontinuities of banks in the system can lead to a cascading failure and may also generate 
multiple equilibria. Gouriéroux et al. (2012) and Elliott et al. (2014) prove that multiple 
equilibria exist when banks suffer an exogenous adverse shock.  
 
Liquidity risk is one of the most important topics when we analyze banking sector financial 
stability. Cifuentes et al. (2005) argue that liquid assets are exhausted first before illiquid assets 
are kicked in when a fire sale occurs. If prices of illiquid assets continue to decline and total 
assets drop below the obligation payment level or the specific threshold, banks are forced to 
initiate a bankruptcy or liquidation process. 
 
Bankruptcy cost and asset recovery rates have been studied often in finance literature. 
Glasserman and Young (2016) argue that when a bank defaults, it would postpone its payment to 
its creditors as well as for legal and administrative costs. Thus, it can only pay a limited portion 
of its available assets to its creditors. And the costs may escalate in terms of both the magnitude 
and the likelihood of default cascades. Rogers and Veraart (2013) extend the Eisenberg-Noe 
framework to illustrate how bankruptcy cost is associated with bank asset recovery rates. 
Following the approach of Glasserman and Young (2016) and Elliott et al. (2014), I assume that 
Λ𝑖(𝑣, 𝑝) represents the total payments (Λ) to creditors as a function of the bank’s assets 𝑣 and its 
nominal obligations (𝑝).  
   
At time 1, when banks start to feel the stress due to adverse shocks, the stressed banks’ equity 
prices may start to fall. Many economists regard a bank’s failure cost to be approximately equal 
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to a bank’s market value. Liquid assets, especially short-term assets, are the first employed to 
meet the payment obligation. A fraction of consumers who experience a liquidity shock may 
tend to withdraw their deposits. A portion of a bank’s remaining assets are employed to pay the 
remaining depositors. As long as a bank’s holding of the short-term assets can meet the 
withdrawals of consumers who withdraw deposits at time 1, the bank can still remain in 
solvency. That said, if a bank’s total assets are at least greater than the total failure cost and  
payment obligation, then this bank survives. 
(Equation 16) 
 𝑉𝑖,𝑡=1 = ∑ 𝑨𝒊𝒌,𝒕=𝟏𝑷𝒌,𝒕=𝟏 + ∑ 𝑬𝒊𝒋,𝒕=𝟏𝑽𝒋,𝒕=𝟏𝒋,𝒕=𝟏𝒌,𝒕=𝟏 + 𝑸𝒊,𝒕=𝟏 −  𝑠𝚲𝑖,𝑡=1(𝑣, 𝑝) ≥ 0  
 
Where Λ𝑖 denotes failure cost and s is a binary number: when s =1, bank i’s value is greater than 
or equal to the threshold level, otherwise, s = 0.  
In matrix notation, Equation 16 becomes 
(Equation 17) 
 𝒗 = �̂�(𝑰 − 𝑬)−𝟏(𝑨𝒑 + Q) – 𝑠𝚲𝑖(𝑣, 𝑝) 
 
A bank’s total market value of its assets can be reflected via the prices of assets sold, as in 
Cifuentes et al. (2005), thus we can employ the following inverse demand function to represent 
banking assets: 
             
(Equation 18) 𝑃(𝑥) = exp(−𝛼𝑥) 
 
Where 𝑷 stands for the price of banking assets and 𝑥 denotes the aggregate demand for bank 
assets. The constant 𝛼 represents the speed of banking assets’ decline. It also implies that the 
price of banking assets is unity if no assets are forced to be sold and approaches 0 when demand 
for a bank’s assets goes to infinity. 
 
At time 2, if the liquidity shock is large enough and a stressed bank’s liquid and short term assets 
may deplete,  
(Equation 19) 𝑄𝑖 = 0, the bank may be forced to use its long-term assets to meet its payment 
obligations. Investors may then be aware of the bank’s liquidity constraint and start to withdraw 
their deposits, causing prices of long-term illiquid assets to plunge. When the total market values 
of long asset decline to a certain threshold level such that a bank’s total assets are less than total 
failure cost, the bank is in insolvency status.  If the bank fails to make the payment for a certain 
period the bank will default and  

(Equation 20) s =1.   

(Equation 21) 

𝑽 = 𝑭(𝑨𝒑 + 𝑸)) − 𝒔Λ𝑖(𝑣, 𝑝)  
 
Equation 21 represents an equilibrium set of values for banks based on debt exposure matrix F. 

Denoted 𝟏𝒊 the indicator variable that takes the value 1 if a liquidation event occurs at bank i and 
0 otherwise.  
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Consistent with other literature (Morris and Shin (2003) and Cifuentes et al. (2005), we assume a 
bank’s decision to lend or borrow is independent across the banking system. 
 
Lemma 1: In any finite connected banking network, given price p, if at least one bank has 
positive equity value, then there is a unique clearing vector 𝑣 such that  
 

(Equation 22) 𝟏𝒊 = {
1 
 0 
     if 𝑣 = 𝑭(𝑨𝒑 + 𝑸) − 𝑠𝚲(𝑣, 𝑝)    < 𝟎

otherwise
  

 
(Equation 23)  𝑯(𝒗, 𝒑) ≡ 𝑭(𝑨𝒑 + +𝑸) − 𝑠𝚲(𝑣, 𝑝) 
 
Equation 22 implies that if 𝑭(𝑨𝒑 + 𝑸) − 𝑠𝚲(𝑣, 𝑝)  > 0, bank i survives. Otherwise bank i 
defaults. Equation 23 shows that there is at least one fixed point of H (.) satisfying Tarski’s fixed 
point theorem (Tarski 1955), and at least one clearing vector 𝑣. Eisenberg and Noe (2001) have 
proved that under regularity conditions, there is a unique fixed point of such a function. 
 
Liquidation equilibrium may exist when a bank’s failure cost equals its assets as shown in 
Equation 22. When failure cost is greater than total assets, discontinuity occurs when a bank can 
no longer operate its business normally. In the banking network system, Gouriéroux et al. (2012) 
and Elliot et al. (2014) have proved that there exist multiple solutions to the valuation. 
Gouriéroux et al. (2012) demonstrate four regimes using two banks as an example: no default, 
joint default, and default of bank 1 only, and default of bank 2 only. Sources of equilibrium 
multiplicity that satisfy Equation 10 can be caused by joint default or at least one bank’s default. 
 
An entry 𝐹𝑖𝑗 of the debt exposure matrix catches at least two liquidation costs if bank j defaults. 
The first type of cost is bank i’ s direct claims on the primitive assets that bank j directly holds. 
The second type of cost is bank j’s failure cost that bank i has to indirectly bear. That said, each 
bank has two states: default and not default. And the ripple effect of each bank is propagated to 
the banks that have linkages with it.   
 
There are four steps of the calibration algorithm that we use in this debt exposure network 
model. First, set up a direct network graph 𝐺 with 𝑁 nodes and estimate the number of inflow 
links and outflow links. Second, construct the debt exposure matrix 𝐹 according to the equations 
above. Third, select a bank and set its price of asset value equal to 1,  
(Equation 24) 𝑝𝑖𝑗 = 1, normalize the matrix using this bank’s price, and set threshold asset 
value,  
(Equation 25) 𝑣𝑖 = 𝜃𝑣𝑖 ,  where 𝜃 ∈ (0,1).  
In this study, we set  
(Equation 26) 𝜃 = 0.5.  
Fourth, select one bank and set its  
(Equation 27) 𝑝𝑖𝑗 = 0 while price value for other banks equals 1, and calculate the best-case 
equilibrium.5 

 
5 “Best case equilibrium” is defined in Elliott et al. (2014), which is one of the scenarios that illustrates cascades of 
failure due to positive cross-holdings with the discontinuities in values between organizations. It refers to a case of 
the minimum possible set of banks/financial institutions that could fail after a shock. 
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2.3 An Example of a Debt Exposure Matrix 

Let’s use a three-by-three matrix as an example to illustrate how the debt exposure matrix is 
constructed. Matrix E represents a bank’s claim on all its counterparts including itself. And we 
set  

(Equation 28) 𝐸𝑖𝑖 = 0.  �̂� represents a fraction share that is owned by outside shareholders. 
Matrix 𝐹 represents the cross-holding of each of three banks on the other banks, where  

(Equation 13)  𝐹 =  �̂�(𝐼 − 𝐸)−1. Debt exposure matrix 𝐹 demonstrates both the direct holdings 
and cross-holdings of assets for each bank. The column sum of matrix 𝐹 equals 1. 

(Equation 29A) 
 

𝐸 =  (
0 0.66 0.21
0.47 0 0.63
0 0.07 0

) �̂� =  (
0.53 0 0
0 0.27 0
0 0 0.16

) F = (
0.79 0.56 0.52
0.20 0.42 0.31
0.01 0.02 0.17

) 

 

Figure 1A. Weighted graph of W =E+�̂� Figure 1B. Weighted graph of F=�̂� (𝐼 −
𝐸)−1 

 
 

Source: Author’s configuration 
 
Note: For Figure 1A and 1B, the widths of the edges are proportional to the shares of cross-holdings; the arrows 
point in the direction of the flow of assets—from the bank that is held and to the holder. Figure 1A demonstrates 
the shareholders’ cross-holdings (E ) and outsider’s share holdings (�̂�), which is represented by self-loops in the 
charts. Figure 1B shows the dependency matrix, which represents how each bank’s equity is distributed among 
all its counterparts. 
 
 

The debt exposure matrix demonstrates not only the exposure in interbank lending but also each 
bank’s exposure that is external to the banking system. As shown in Figure 1A and Figure 1B,  
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(Equation 29B) 𝐹𝑖𝑖 > 𝑊𝑖𝑖 ; that said, the share values in the diagonal of matrix F are always 
greater than the share values in the diagonal of matrix W, because debt exposure matrix F 
includes both a bank’s direct claims and indirect claims, while matrix W only has a bank’s direct 
claims. Another feature that we should notice is that even though Bank C has no direct claims on 
Bank A (Figure 1A), it does have ultimate debt exposure on Bank A, with 1 percent that 
contributes from indirect claims (Figure 1B). These two figures show that outside shareholders 
of Bank A have direct and indirect claims on 52 percent of Bank C’s direct asset holdings, 
though it has only 21 percent of Bank C’s shares directly in cross-holdings.  
 
3. Stochastic Process of Banking Network 
 
3.1. Baseline Stochastic Model  
 
In this section, I want to introduce a Markov chain to catch the banking sector’s long-run path.6 
A Markov chain is a stochastic process with the property that the future state of the system is 
dependent only on the present state of the system and conditionally independent of all past states. 
As shown in Figure 2, after an adverse shock, banks move between the asset side called B space 
and the liability side denoted L space. At time t, let 𝑛1 be a number of banks in state B, while 𝑛2 
is the number of banks in state L. The total number of banks in the system is N, 
(Equation 30) 𝑁 = 𝑛1 + 𝑛2, which is a constant number.  
 
The threshold for each bank’s initial position in the lattice ℙ (𝑏, 𝑙) is the bank’s initial assets-to-
liabilities ratio. Any adverse shock to any bank in the lattice may affect the bank and the 
associated banks’ balance sheets such that their initial states in the lattice may change. Some 
banks may survive and some may not. Using Lemma 1 that we discuss in section 2, we can write 
the threshold for banks’ movement in the lattice as follows: 
(Equation  31) Φ = 𝑏𝑖+𝑞𝑖

𝑙𝑖
, 

Conditions Φ > 1 or Φ < 1 or Φ = 1 represent three different states of bank i in the lattice. If 
bank i’s Φ < 1, this bank falls into Liability (L) state, otherwise, it is in B state, where the bank 
lies above the 45-degree line. When Φ = 1, it stays at the 45-degree line. Our analysis mainly 
focuses on movement between Φ ≥ 1 and Φ < 1 states.  
 
Banks’ transition of states may go only from 𝑛 to 𝑛 + 1 or from 𝑛 to 𝑛 − 1 on the lattice. Let’s 
assume that a bank removes a loan or does not renew a loan at a rate 𝜑− per unit of time, and a 
bank issues a new loan or renews an existing loan with its counterparties in the system at rate 𝜑+ 
per unit time, and  
(Equation 32) 0 ≤ 𝜑− ≤ 1, .  
(Equation 33) 0 ≤ 𝜑+ ≤ 1Please note that issuing a new loan or renewing the existing loan 
implies adding a link, and removing a loan means cutting a link.  
 
Denote 𝜉 as the negative shock arrival rate per unit time. All loan addition (𝜑+) and loan 
reduction (𝜑−) distributions are Poisson processes and mutually independent stochastic 
variables, and state transitions between two states occur through exactly one bank moving to 

 
6 The basic knowledge of Markov chain regarding master equations can be referred to  “Introduction to Master 
Equations” , https://ifisc.uib-csic.es/raul/CURSOS/SP/Introduction_to_master_equations.pdf 
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each direction at a time. The overall number of added and removed loans in the network system 
is (Equation 34) 𝜑 = 𝜑− + 𝜑+.   
 
Consider a large class of finite state space, a continuous-time Markov chain  
(Equation 35) {𝑋(𝑡): 𝑡 ∈ [0, 𝑁]} whose state spaces are finite [0,1,2, . . 𝑁]. Assume that its 
transition probabilities 𝑃𝑖𝑗(𝑡) 
are stationary; that is:  
(Equation 36) 𝑃𝑖𝑗(𝑡) = 𝑃(𝑋(𝑡 + 𝑠) = 𝑗|𝑡(𝑠) = 𝑖)  ∀ ∆𝑡 ≥ 0s 
 
For the boundary solution, we assume that if there are no banks in the network system, then the 
removing rate  
(Equation 37) 𝜑−= 0. 𝑋(𝑡) is allowed to increase or decrease. If at time t the process is in state 
asset (B) side, after a random sojourn time it may move to liability side (L). The process is 
irreducible if and only if   
(Equation 38)  𝜑𝑛+ ≥ 0 and  
(Equation 39) 𝜑𝑛− ≥ 1. 
 
We want to find out the probability 𝑃(𝑛) of having 𝑛 banks in state B, L at time t. That is, the 
master equation that provides a trajectory of the total probability density function of total bank 
movement over time. It can be obtained by considering all transitions that can take place during 
the time interval between 𝑡 and 𝑡 + ∆𝑡. There are 𝑛 banks in state B and 𝑁 − 𝑛 banks in state L.  
 
Let’s list the three possibilities that a bank may stay and move between asset state (B) and 
liability state (L). First, there are 𝑛 + 1 banks at state B at time t, and one of them defaults due to 
adverse shock and moves to state L during the time interval (𝑡, 𝑡 + ∆𝑡). Any of these 𝑛 + 1 
banks in state B has a probability  
(Equation 40) 𝑃𝑛+1 (𝑡 + ∆𝑡) = (𝜑−)∆𝑡 + 𝑂(∆𝑡)2. The total possibility that any bank may move 
is (𝑛 + 1) (𝜑−) ∆𝑡. We assume there are no more than two banks jumping from state B to state 
L. The notation 𝑂(∆𝑡) represents some function that is much smaller than ∆𝑡 for small ∆𝑡. 
 
For the second possibility, there are 𝑛 − 1 banks at state B (asset side) at time 𝑡, and one of the 
𝑁 − 𝑛 + 1 banks at state L (liability side) moves to state B. Let 𝑗 ∈ 𝑁.  A bank may reduce its 
debt or increase its lending such that it improves its balance sheet resilience due to external 
shock. This state change can be expressed as: 
(Equation 41) 𝑃𝑛−1(𝑡 + ∆𝑡) = {[𝑁 − (𝑛 + 1)]𝜑+∆𝑡}𝑁−𝑛+1 = (𝑁 − 𝑛 + 1)𝜑+∆𝑡 + 𝑂(∆𝑡)2, 
where 𝑂(∆𝑡)2 represents a bank moving from state B (asset side) to state L and from state L to 
state B. We can estimate these jumps  
(Equation 42) 𝑂(∆𝑡)2 = 𝜑−𝑑𝑡 ∗ 𝜑+𝑑𝑡. We exclude the higher order terms such as more than 
two banks moving from one state to the other state. Similarly, the third possibility occurs as 
follows: there are 𝑛 banks at state B at time 𝑡 and no bank moves between the two states. It can 
be shown as 
(Equation 43) 1 − 𝑃𝑛(𝑡 + ∆𝑡) = 1 − [𝑛(𝜑− + 𝜑+)∆𝑡+𝑂(∆𝑡)2]. 
 
Since no other possibilities take place, we sum them up together as the master equation: 
(Equation 44)    𝑃𝑛,𝑛+𝑗(𝑡 + ∆𝑡) = 𝑃𝑟𝑜𝑏{𝑋(𝑡 + ∆𝑡) − 𝑋(𝑡) = 𝑗| 𝑋(𝑡) = 𝑛}  
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                 = 𝑃𝑛+1(𝑡)(𝑛 + 1)𝜑−∆𝑡 + 𝑂(∆𝑡)2⏟                    
𝑗=𝑛+1

   

         + 𝑃𝑁−𝑛+1(𝑡)(𝑁 − 𝑛 + 1)𝜑+∆𝑡 + 𝑂(∆𝑡)2⏟                        
𝑗=𝑁−𝑛+1

 

             + 𝑃𝑛(𝑡){1 − [𝑛(𝜑− + 𝜑+)∆𝑡]}+𝑂(∆𝑡)2⏟                        
𝑗=𝑛

 

Rearranging this equation, 
(Equation 45)     
𝑃𝑛(𝑡 + ∆𝑡) − 𝑃𝑛(𝑡) = 𝑃𝑛+1(𝑡)(𝑛 + 1)(𝜑

−)∆𝑡 + 𝑃𝑁−𝑛+1(𝑡)(𝑁 − 𝑛 + 1)𝜑
+∆𝑡  

                     −𝑃𝑛(𝑡)𝑛(𝜑
− + 𝜑+)∆𝑡 + 3𝑂(∆𝑡)2 

 
Dividing both sides by ∆𝑡, taking the differential of the equation, rearranging this equation and 
taking the limit ∆𝑡 → 0, the master equation without considering external shock on the balance 
sheet can be written as follows: 
(Equation 46)  

𝜕𝑃𝑛(𝑡)

𝜕𝑡
= 𝜑−(𝑛 + 1)𝑃𝑛+1(𝑡) + 𝜑

+(𝑁 − 𝑛 + 1)𝑃𝑛−1(𝑡) − 𝑛[𝜑
− + 𝜑+]𝑃𝑛(𝑡) 

(Equation 47) 
         

     𝜕𝑃0(𝑡)
𝜕𝑡

= 𝜑−𝑃1(𝑡) 
 
This master equation describes the marginal distribution function of the fraction of surviving 
banks in the banking system. Appendix A provides the values of initial moment, mean, and 
variance under different adding and removing loan rates.  
 
Using master equation 44 and 47, we can conduct the dynamic stochastic process analysis. The 
three simulation charts demonstrate the surviving banks with different creation rate or loan 
removal rate under different scenarios based on Markov Chain death-birth process. Figure 3A is 
the pure bank creation model or birth process. We start with five banks, each with probability 𝜑+ 
of splitting in per unit time. We continue this process until bank size reaches a target number N.. 
Assuming banks add new loans or increase links per unit time with its counterparties, without 
removing loans, the total number of surviving banks increases dramatically. Figure 3B 
demonstrates the banks with only rate of loan removal or death process. Starting with 100 banks, 
each having probability 𝜑− of removal loan in each time step, and we continue this process until 
all loans have been removed. The higher the removal rate, the fewer the surviving banks at a 
given time. In the bank creation and removal model (Figure 3C), both creation rate and removal 
rate are endogenously determined by the master equation. We set the creation rate equal to 1 and 
the removal rate at 0.4 and 0.5 respectively, and initial bank population is 5. Figure 3C shows 
that lower removal rate has more surviving banks at a given time than those with higher removal 
rate. 
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Figure 2. Dynamic Adding and Removing Loan Rates Movement on Balance Sheet 

 
Note: The diagram shows how loan creation rate (𝜑+), loan removal rate (𝜑−), and stochastic shock 𝜉 caused by 
endogenous bank default rate affect a bank’s balance sheet given its initial balance sheet status in the network. The 45-
degree line shows the break-even line between the asset side (left of the 45-degree line) and liability side (right of the 45-
degree line). Bank A’s, Bank B’s, and Bank F’s assets-to-liabilities ratios are greater than 1 and stay at the left side of the 
break-even line. Bank C’s ratio is equal to 1 and lies on the break-even line. Bank D’s and Bank E’s stay to the right of 
the break-even line. A stochastic shock 𝜉 may propagate through the network. Coupled with loan creation rate or loan 
removal rate given a bank’s initial balance sheet status, the shock is unevenly distributed cross the network. For example, 
Bank D is more vulnerable to an adverse shock than other banks, and Bank E benefits by this adverse shock. The shadow 
area corresponds to Equation 13 where the liquidation process takes place. 

 
Figure 3A. Surviving Banks in Pure Bank with 
Loan Creation Model  

 
Figure 3B. Surviving Banks in Pure Bank with 
Loan Removal Model 

  
Source: Author’s loan creation model estimation 
Note: Bank decay rate = 0, initial bank population = 1. 

Source: Author’s loan removal model estimation 
Note: Bank loan creation rate = 1, initial bank population 
= 100. 
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Figure 3C. Surviving Banks in Dynamic Bank with 
Loan Creation and Removal Model 

 

Source: Author’s simulation output 
Note: creation rate = 1, initial bank population = 5. 

3.2 Endogenous Rate of Bank Failure  
 
Based on the evolution of the interbank network described by master equation 15, we can further 
derive the master equation under adverse shock using the same approach as Gardiner (2009) and 
Anand et al. (2012). We assume the endogenous bank default rate μ, and the initial default rate 
from the asset side and the liability side is 𝛿𝑏,0 and  𝛿𝑙,0 respectively. The probability distribution 
function includes the joint probability of balance sheet states (𝑙𝑖𝑡, 𝑏𝑖𝑡), and the marginal 
distribution function 𝑃(𝑙𝑖𝑡, 𝑏𝑖𝑡) of the evolution of the fraction of banks with 
(Equation 48)  𝑙𝑖𝑡 = 𝑙 and 
(Equation 49)  𝑏𝑖𝑡 = 𝑏 can be derived as follows: 
(Equation 50) 
 𝜕𝑃𝑛(𝑡)
𝜕𝑡

=  μ𝛿𝑏,0𝛿𝑙,0  + 𝜑
−(𝑛 + 1)𝑃𝑛+1

𝑡 (𝑙 − 1, 𝑏) + 𝜑−(𝑛 + 1)𝑃𝑛+1
𝑡 (𝑙, 𝑏 − 1) 

         +(μ𝑏 + 𝜑+)(𝑁 − 𝑛 + 1)𝑃𝑁−𝑛+1𝑡 (𝑙 + 1, 𝑏) 
          +(μ𝑙 + 𝜑

+)(𝑁 − 𝑛 + 1)𝑃𝑁−𝑛+1
𝑡 (𝑙, 𝑏 + 1) 

   −[𝜉𝛩(𝑙𝜉 − 𝑏𝜉 − 𝑞0) + 2𝜑+ + ( μ𝑏 + 𝜑−)𝑙 + (μ𝑙 + 𝜑−)𝑏]𝑃𝑛𝑡(𝑙, 𝑏)           
Where 𝛩 refers to the Heaviside function,                 
(Equation 51) 𝛩(𝑥) = 1 if and only if 

(Equation 52)  𝑥 ≥ 0 and otherwise  

(Equation 53) 𝛩(𝑥) = 0. Appendix A shows the values of the initial position, mean, and 
variances from the master equation. 

Figure 2 demonstrates the dynamic movement of banks’ position according to master equation 
16 with adverse shock or liquidity shock. This master equation describes the general trajectory 
path without external shocks under the Poisson processes.  
 



 
 

   15 
 

Suppose there is an external shock that results in banks’ balance sheets changing so that banks 
jump between the asset and liability sides. Denote 𝜇 as the endogenous bank default rate; when 
(Equation 54) 𝜇 = 0, the probability of default may be low, and when 
(Equation 55)  𝜇 > 0, bank default occurs. As we define in the previous section, 
(Equation 56)  𝜑− =1 refers to per unit rate of a bank moving right or up one unit in Figure 2, 
𝜑+represents the rate of a bank moving to the left or below on the grid. Adding endogenous 
default rate 𝜇, total removal rate is 𝜇 + 𝜑−. Assume that the rate 𝜉 is the critical turning point 
moment when a bank’s liability is greater than its assets, that is 
(Equation 57) (𝑏𝑖

𝜉𝑡 + 𝑞𝑖
𝜉𝑡) < 𝑙𝑖

𝜉𝑡  
When a bank defaults, 𝜉𝑖 represents a moment that a bank reaches the threshold point.  
Twin stochastic processes ((𝑏𝑡, 𝑙𝑡) are Poisson distribution variables with mean 1/(𝜇 + 𝜑−). The 
error function for the Gaussian distribution is  
(Equation 58) 
erf (𝑥) = ( 2

√𝜋
 ∫ 𝑒−𝑡

2𝑥

0
) 

 
The derivation of the endogenous rate of bank default can have similar results as Anand et al 
(2014) findings. There are several key findings from the model results7. The results are 
consistent with Gai and Kapadia (2010), Allen and Gale (2000), Anand et al. (2012), and Elliott 
et al. (2014) regarding the relationship between the probability of a bank’s failure, its contagion 
effect, and its position in the network. That is, network density has a non-linear relationship with 
the banks’ default rate and the bank’s balance sheet. In general, from a bank’s balance sheet 
perspective, the higher the debt ratio, the higher the default rate. From the banking network 
density space perspective, if a bank is located in the sparse space8 of a network, interbank density 
connectivity serves as a shock absorber and mitigates the amplifying effect of the shock; 
therefore, the default rate will be low. However, if a bank is located in the dense space, 
interconnections start to serve as a mechanism for propagation of shocks; therefore, the default 
rate will be high.  In addition, if a bank is located in a co-existence space, which is between 
sparse and dense space, its default rate would be between a high default rate and a low default 
rate. Overall, the model results further quantitatively and qualitatively validate the argument of 
financial systems exhibiting a robust-yet-fragile tendency.  
 
3.3 Steady State Solution of Banking System 
 
For the general loan addition and removal process, we assume that the limits  
Equation (59) 
lim
𝑛→∞

𝑃𝑖𝑗(𝑡) =  𝜋𝑗 ≥ 0 exist and are independent of the initial state 𝑖. 𝜋𝑗  is called a stationary 
probability distribution.  
 
 
 

 
7 The key findings from Anand et al. (2014) include: First, the endogenous rate of bank failure 𝜇 depends on the rate 𝜉 at which the negative 
shock through the network and the net difference of loan creation rate and loan removal rate (λ).  Second, the endogenous default rate 𝜇 exists a 
non-linear path in λ and Φ (Assets/Liabilities) space with three distinguished boundaries: a dense boundary, a sparse boundary and a dense-sparse 
co-exist boundary. Different  𝜇 curves correspond to different Φ and λ values. They note the existence of either one or three fixed points. 
8 Like the Anand et al. (2014) paper, there are no fixed thresholds that separate a sparse space, a dense space, and a co-existence space in a 
banking network system. The thresholds are changing in each network since they are relative values in each network.   
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Equation (60) 
Denote 𝑋𝑖 = 𝜑𝑃𝑖𝑗  where 𝑋𝑖 represents a state in a set of states.  
 
Figure 4. Dynamic Loan Creation and Loan Removal Rates in the Steady State 
 

 

 

 
Note: Each box in Figure 4 represents a state (X), the number inside each box refers to the index of a state (𝑋𝑖). 
The initial state 𝑋0 and the final state index is 𝑋𝑚. 𝜑+ stands for loan creation rate, 𝜑−  stands for loan removal 
rate. Forward arrow moves with speed 𝜑+ and backward arrow moves with speed 𝜑−. The ratio between loan 
creation rate and loan removal rate determines the dynamic equilibrium of a banking system. 
 
Source: Author’s configuration 
 

 
Proposition 1. In the long-run steady state, (i) if the rate of the number of new loans creation 𝜑+ 
equals the rate of the number of loans removed 𝜑− , 
Equation (61) 𝜌 = 𝜑+

𝜑−
, then the probability distribution at each state is constant,  

(Equation 62) 𝜋0 = 𝜋𝑛, and 
(Equation 63) 𝜋0 =

1

1+𝑚
 ; as the number of states increase, 𝜋0will decrease. 

(Equation 64) (ii) If 𝜌 < 1, 𝜋0 = 1 −  𝜌 then 
(Equation 65) 𝜋𝑛 = 𝜋0𝜌𝑛 = (1 − 𝜌)𝜌𝑛 and 
(Equation 66) 
 𝐸(𝑋𝑛) =

𝜌

1−𝜌
  

The proof can be found in Appendix B. 
 
From the network stability perspective, the rate of adding new loans and removing the existing 
loans can be viewed as updating the network density.  
 𝜌 represents the ratio of the density in the network. 𝜌 is moving between 0 and 1, 
(Equation 67) 𝜌 ∈ (0,1). When the rate of adding new loans equals the rate of removing existing 
loans in the network, the whole network system is in the steady state. 
(Equation 68)  𝜌 < 1 means the rate of removing an existing loan per unit time (𝜑−) is greater 
than the loan creation rate (𝜑+). If the average value of 𝜌 in the whole network system is less 
than 1, it implies more loans/links are cut than new loans/links are added in the system. The 
density of the network decreases and moves toward the left side in Figure 4. From the aggregate 
banking sector perspective, this trend direction may also mean that the liability side is shrinking 
faster than the asset side. All of these results will be opposite if 
(Equation 69) 𝜌 > 1.  
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4. Stochastic Process of Debt Exposure Matrix  
 
In section 2.3, we derived the debt exposure matrix, which shows that each bank’s market value 
ultimately relies on the assets held by its counterparties. To analyze the stability or long-term 
equilibrium of the network, we introduce the stochastic process-Markov chain, which is a 
particular type of stochastic process where only the present value of a variable is relevant for 
predicting the future. The history of the variable and the status that the present has emerged from 
the past are irrelevant.  
 
Let’s assume a set of states, 
Equation (70) 𝑋 = { 𝑋1, 𝑋2, 𝑋3… ,𝑋𝑛},  
and the Markov chain process starts in one of these states and moves successively from one state 
to another. A move from one state to another is called a step. Transition probabilities 𝑃𝑖𝑗 
represent the chain moves from state 𝑋𝑖 to 𝑋𝑗, and these probabilities do not depend upon which 
states the chain was in before the current state. The process can remain in the state it is in, and 
this occurs with probability 𝑃𝑖𝑖. Usually we can specify a particular state as a starting state from 
the set of state 𝑋.  

The transition matrix is composed of transition probabilities 𝑃𝑖𝑗. The debt exposure matrix F that 
we discuss in section 2.3 can be called a transition matrix. The entry of 𝑃𝑖𝑗 here represents the 
percentage share of one bank’s debt exposure across its counterparties within and outside the 
banking system. In order to be consistent with Markov chain theory, we transform the matrix 
such that each row sum, rather than column sum, is equal to 1. This transformation of the matrix 
does not affect any changes of the output. We can interpret the matrix F as follows: For the first 
row, 79 percent of Bank A’s equity is owned by outside shareholders, and 20 percent and 1 
percent of Bank A’s equity is owned by Bank B and Bank C, respectively. We assume that 
external shocks S (S1, S2, S3) are random numbers. Note that in this study, we assume that the 
holders of an equity are the owners of an equity.  
    

Proposition 2. For a finite bank population size N, the interbank payment between banking 
network Markov processes is ergodic and possesses a unique invariant measure. 
 
To prove this proposition, we show that any state �̂� can be reached from any state �̈� via a 
sequence of elementary processes of link addition or deduction. The new state evolves as link 
reduction or addition. This process exists via a positive probability for both �̂� and �̈�, and it has a 
unique invariant measure. The proof of proposition can be found in Appendix C. 
   

According to stochastic process theory, a discrete-time random process (𝑋𝑛)𝑛≥0 with initial 
distribution Γ and transition matrix P is a Markov chain if the following two conditions are met:  
𝑋0 has distribution Γ0, 
 
(Equation 71) 𝑃( 𝑥0 =  𝑖0) = Γ0;  
 
 (Equation 72) 
 𝑃( 𝑥𝑛+1 =  𝑖𝑛+1| 𝑥0 =  𝑖0, … ,  𝑥𝑛 =  𝑖𝑛) = 𝑃𝑖𝑛𝑖𝑛+1 , 𝑖𝜖 𝐼.  
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where 𝐼 is called a state-space and 𝑖 is called a state. This equation means that each event occurs 
independently. A Markov chain should have the following property:  
(Equation 73) 

 𝑃( 𝑥0 =  𝑖0,  𝑥𝑖 =  𝑖𝑖, … ,  𝑥𝑛 =  𝑖𝑛 ) = Γ𝑖0𝑃𝑖0𝑖1𝑃𝑖1𝑖2 …𝑃𝑖𝑁−1𝑖𝑁 

Basically, this property implies that a Markov chain has no memory. Other properties of a 
Markov chain in the steady state include: First, there is a unique stationary matrix H that can be 
found by solving the equation H*P = H; second, given any initial state matrix H0, the state 
matrix Hk  approaches the stationary matrix H; and third, the matrix Pk approaches a limiting 
matrix �̅� and is equal to the stationary matrix H. Using the properties of the Markov chain, we 
can find the stationary matrix H. 

The dependency matrix F satisfies all the Markov chain properties above and can be called a 
regular Markov chain. The matrix F is the transition matrix at the initial state, and a one-time 
external stochastic shock s (s ∈ 𝑁) may change the distribution of the current state of the banking 
system in a sequence step. To be consistent with the Markov chain definition, we transform 
dependency matrix F (which is matrix P in the first requirement above) so that the row sum equals 
1.  

(Equation 74) 

𝑭 = (
0.79 0.56 0.52
0.20 0.42 0.31
0.01 0.02 0.17

)  𝑭′ = [
0.79 0.20 0.01
0.56 0.42 0.02
0.52 0.31 0.17

] 

Solving the equation H*F = H, we find the long-term equilibrium or steady state vector. 
Computing successive powers of F results in 

(Equation 75) 

lim
𝑛→∞

(𝑃)𝑛 = (
0.7265 0.2585 0.0150 
0.7265 0.2585 0.0150 
0.7265 0.2585 0.0150 

) 

where the rows are identical and equal to 
(Equation 76) 

H = [ 0.7265, 0.2585, 0.0150]. 

Figure 5 shows that it takes a total of nine steps from the initial transition state to reach this final 
steady state (𝑛 = 9). Each heatmap chart demonstrates the dynamic changes of each bank’s equity 
share in each state. The equity share of each country will no longer change after state 8, implying 
the long-term equilibrium is reached, suggesting that after an external shock given the initial state 
(matrix F), in the long-run steady state, Bank A’s, Bank B’s, and Bank C’s equity share in the 
whole banking network will be 73 percent, 25 percent, and 2 percent, respectively 
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Figure 5. Evolution of Steady State Equilibrium of Debt Exposure 

 Figure 5.1. Heat Map -State 0 Figure 5.2. Heat Map -State 1 Figure 5.3. Heat Map -State 2 

   

 Figure 5.4. Heat Map -State 3 Figure 5.5. Heat Map -State 4 Figure 5.6. Heat Map -State 5 

   

 Figure 5.7. Heat Map -State 6  Figure 5.8. Heat Map -State 7 Figure 5.9. Heat Map -State 8 

   

Source: Network model outputs 

 
4.1 Banking Sector Stochastic Network Model Scenarios and Outputs  

A bank’s failure can be triggered by each component or multiple components of both the asset 
side and/or liability side simultaneously due to endogenous and exogenous adverse shocks. 
Endogenous shocks can be a sudden decline in deposits or increases in non-performing loans, 
rising interest payments, mismatch of durations, or industry-level specific shocks. Exogenous 
negative shocks can be a sudden economic recession or turmoil, pandemic, political instability, a 
natural disaster, or unexpected specific sector business cycle downturn. Other macroeconomic 
shocks can be an escalation of a trade war, a huge decline of foreign exchange rate, sudden 
shrinking of foreign exchange reserves, or a sudden interest rate hike. Our scenarios consider 
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both shocks from asset valuation and magnitude, and the model simulations are based on the 
algorithm in section 2. 

I use quarterly cross-holdings data from the Bank for International Settlements (BIS), which 
shows one country’s aggregate banking sector’s total foreign claims on another country’s 
banking sector, and it measures the value of immediate borrowers rather than final borrowers. 
Immediate borrower refers to a direct borrower when a bank is from a country different from that 
of a final borrower. I choose two sets of country data from BIS. The first set of data includes 14 
European countries, and the second set of data includes 24 advanced countries and emerging 
market economies. From the BIS original data, we obtain the matrix 𝐴(𝒊, 𝒋), which shows 
country 𝑖 's claims on country 𝑗. We transform the matrix to country i's debt to country j, so that 
the row sum equals 1 rather than column sum equaling 1.  

To analyze the stability of the financial network, we first identify who fails in a cascade under 
different scenarios using the algorithm that we derive in section 2. Then I estimate the long-term 
equilibrium for two sets of global banking networks. I assume in the long-term equilibrium level, 
each country’s total claims on all its counterparties should be balanced by its total debt held by 
all its counterparts, and the sum of a country’s total investment across all its counterparties 
equals 1. Thus 𝐴 = 𝑰. Total gross domestic product (GDP) can be viewed as its initial value of 
primitive assets for each country. I normalize each country’s GDP by setting one country’s GDP 
in 2019 to 1 and obtain a vector 𝒑 such that  

(Equation 77) 𝒗 = 𝑭𝑨𝑷 = 𝑭𝑷.   

For the 14 European countries network model scenario, since the Eurozone crisis started in 2009 
and ended around 2014, I use BIS data from 2014 and 2019 here. 2019 data is treated as the 
baseline. I assume a country may fail if its total value falls below one half of its initial baseline 
value. According to the studies by Reinhart and Rogoff (2011) and Elliott et al. (2014), I also set 
up the foreign-to-domestic holdings ratio by one third so that it is in line with empirical 
literature.  

In the first scenario, we consider the dynamic changes in the ratio of cross-holdings and 
threshold simultaneously. Cross-holdings ratio allows us to measure a country’s foreign 
investment and foreign debt condition change, and threshold ratio provides us the status of a 
country’s nominal GDP and its debt. By considering both cross-holdings ratio and threshold 
simultaneously, we may have a better picture of a country’s sovereign risk from a 
macroeconomic perspective. 

Figure 6A shows the 14 European countries’ network structure based on the debt exposure 
matrix. I find out only four pairs of edges are not connected among the total 196 edges in this 
chart.9 The debt exposure ratios in France and Germany are relatively higher than other 
countries. The debt exposure matrix shows that the diagonals referring to each country’s 
primitive assets are all greater than 0.5. Table 1A shows the cascade sequence in different waves. 
Greece is the first to fail due to its higher debt ratio and low primitive assets. Sweden also fails. 
The U.K. is also vulnerable because more countries invest in the U.K. than the U.K. invests in its 
counterparts. That said, the U.K. has relatively higher liabilities than assets.  

 
9 None of Belgium, Greece, Greece, and Sweden’s debt is held by the Netherlands, Finland, Sweden, and Finland, respectively. 
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For each round of simulation, the cascade sequence may change, but it will eventually converge 
to the final invariant outcome; in this case it is the state that cross-holding share is 0.5 and θ is 
0.95. It is possible that the final equilibrium outcome shows that no country fails, or all countries 
fail, or some countries fail. In this scenario, there are in total 13 countries failing in three waves. 
The only country that does not fail is Ireland, which is very surprising.  

As shown in Table 1B, in terms of 2019 GDP size, Ireland ranks 10th among these 14 countries, 
and Ireland’s debt exposure is the highest in terms of GDP in 2020Q2. However, its 2019 GDP 
was 50 percent higher than its 2014 GDP, which is the highest GDP growth rate among the 14 
countries. The high GDP growth rate of Ireland offsets its negative debt size compared with its 
peers, thus Ireland passes the stress test. This scenario tells us that only using debt-to-GDP ratio 
as a risk measure is not a comprehensive method. This model considers both the price effect and 
income effect multilaterally over time, which provides more accurate analysis of a country’s 
sovereign risk in the network.   

For the second scenario, I run the same simulation as the 14 countries case above using BIS 
bilateral data of 24 countries. Table 2 demonstrates a subset of simulation results in which the 
cross-holdings share is 10 percent and 50 percent, respectively. In these two scenarios, Brazil, 
Greece, and Turkey are the countries that fail the test ultimately. Other countries such as Italy, 
Sweden, France, Spain, and the U.K. fail in some scenarios, as these countries are vulnerable to 
adverse shocks due to their high debt ratio. The rest of the other countries are relatively resilient. 

Table 3 demonstrates the share of long-term steady state equilibrium for both scenario 1 and 
scenario 2. The value shares are estimated using the Markov chain algorithm that I discuss in 
section 2. For example, France has the highest value share in both scenarios, implying that 
France has the highest equity share dependence ratio with its counterparties compared with its 
peers in these two groups of countries.  

One of the caveats of the model is that the model results in sensitivity to the input data since it 
measures the relative balance sheet change among peers. For example, we use two years’ GDP 
data and debt exposure data here in the model; if we change the data, the results may slightly 
change depending on the relative price effect and magnitude effect horizontally or relatively 
among peers. To improve the accuracy of the model result, we can input the average values or 
moving average values in the model so that the results reflect the average changes. 
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Figure 6A. Network of Debt Exposure Matrix 
of 14 Countries 

Figure 6B. Heatmap of Dependence Matrix 
of 14 European Countries 

 
 

Note: The numbers in Figure 6B stand for the following countries: 1. Austria (AT); 2. Belgium (BE); 3. Finland 
(FI); 4. France (FR); 5. Germany (DE); 6. Greece (GR), 7. Ireland (IE); 8. Italy (IT); 9. Netherlands (NL); 10. 
Portugal (PT); 11. Spain (ES); 12. Sweden (SE); 13. Switzerland (CH); 14. United Kingdom (UK) 

 

5. Shortest Path in the Banking Network 

We have discussed the contagion effect in financial networks: One bank’s failure may lead to 
other banks’ exposure to higher solvency risk. Instead of finding which bank fails first in a 
network, an investor can construct a debt exposure matrix to find out the minimum cost or 
highest cost for each pair in the whole network so long as we have bilateral data. I use Dijkstra’s 
Algorithm in analyzing how an investor can find a path with the lowest borrowing cost of a 
specific portfolio in a network. For example, an investor knows the total investment volume 
among four countries and also the price of the loan investment, supposing the price is nominal 
exchange rate. We can construct a four-by-four matrix to estimate the lowest cost of each pair in 
the network. 

For simplicity, I use randomly generated numbers to represent the debt exposure among these 
four countries. Figure 7 demonstrates four countries’ consolidated foreign claims of banks from 
one country on debt obligation of another country. An edge represents the debt obligation 
between two countries. The arrows point to the creditor of assets from the debtor. Each number 
on each edge demonstrates the debt obligation of one country to another.  

Assume that an investor needs to consider the lowest cost to borrow loans from one country to 
another country. Suppose that the debt value represents the total cost for one country to another 
one. Each country can borrow from each other and there is no other transaction cost and no 
capital control between each pair of these four countries.  

Using the shortest path algorithm, what is the lowest cost from country 𝐴 to country 𝐹? Table 4 
shows the benchmark cost from each country to another under both the benchmark scenario and 
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the shortest path scenario. The benchmark scenario refers to the original cost between two 
countries. As we can see, only country 𝐹 has no change in terms of costs under both scenarios.  

The direct cost from country 𝐴 to country 𝐷 is $13,969 million; however, if an investor starts 
from country 𝐴 to country 𝐶, it would cost her only $894 million, then from country 𝐶 to country 
𝐷, which is another $11,924 million, thus her total cost or shortest path from country 𝐴 to 
country 𝐷 is $12,818 million, which is lower than direct cost ($13,969 million). The same thing 
holds if an investor makes an investment directly from country 𝐵 to country 𝐷, which would cost 
her $241,081 million. However, it costs an investor only $13,279 million if she takes the shortest 
path, which goes through country 𝐶 first, then to country D.  

Overall, from a sovereign wealth management perspective, how to mitigate various risks from 
different channels via choosing the minimum cost path in a global capital market is very 
important. This is another way of mitigating or identifying the potential highest risk in the 
network. 

 

Figure 7. Debt Network with Shortest Path (Mil.US$) 

 
Source: Author’s configuration  
Note: An edge represents the debt obligation between two 
countries. The arrows point to the creditor of assets from the 
debtor. Each number on each edge demonstrates the debt 
obligation of one country to another. 

 

6. Concluding Remarks 

Though there is rich literature related to contagion and solvency risk in financial networks, very 
little has been studied about both the short-term equilibrium and long-term steady state 
equilibrium of the banking sector networks. This paper provides a couple of novel methodologies 
in analyzing banking sector solvency risk and network stability from the perspective of network 
structure and individual bank solvency. I employ a stochastic model to analyze the trajectory 
path of surviving banks in the network system. The loan creation rate and loan removal rate, 
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coupled with the endogenous bank default rate, affect both individual banks’ solvency and the 
stability of the network. Consistent with the findings of other literature, I find that the network 
exhibits a robust yet fragile tendency phenomenon. More importantly, this stochastic model can 
quantify the relationship between the solvency ratio and network density of the whole network, 
and can indicate the direction of aggregate balance sheet movement, which provides or serves as 
early warning signals of network stability. 

I derive a debt exposure matrix based on existing literature by incorporating time frame, and 
extend the model by considering a Markov chain process to analyze the stability of the network 
in long-term steady state equilibrium. The long-term steady state equilibrium of the debt 
exposure matrix enables us to forecast potential solvency risk given the network structure, and 
the debt exposure matrix provides comprehensive information that not only includes individual 
bank-level balance sheet information, but also the debt exposure relationship between each 
creditor and debtor in the whole network.  

More importantly, I estimate the short-term dynamic equilibrium by identifying the bank that 
fails first and the cascade sequence of bank failure waves. Using a bilateral debt exposure matrix, 
we can use the shortest path algorithm to analyze optimal allocation of funds within a network. 
We can estimate the “debt distance”10 of each bank with respect to this first failed bank as well, 
and estimate the solvency risk of each bank in a network.  

Further studies can be explored from many aspects along this approach of network analysis. 
First, since the first bank that fails can be identified through the network, we can also further 
analyze and forecast the probabilities of the magnitude of the waves and the length of the waves 
to each node in the network. Second, the question regarding whether bank-run crises are more 
frequently caused by the interbank lending systems or non-bank financial sectors has not been 
well studied. Knowing the transmission channel between bank and non-bank financial sectors 
will allow us to have better ideas in the analysis of contagion risk between sectors. Third, more 
Markov chain processes such as hitting time, recurrence, and transience can be used to analyze 
the network stability. Lots of fields remain as uncharted territory for us to explore. As more 
bank-level data is available now than a decade ago, it is possible for us to digitalize banking 
sector networks in the near future by using creative methodologies and cutting-edge 
technologies. 

 

 

 
10 The number of connected and contagion banks between the root/trigger bank and the target bank can be referred 
to as debt distance. For example, supposing Bank A is a target bank, and there are eight banks that are in the shortest 
path from root bank to Bank A, then debt distance is eight. 
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Table 1A. Output of 14 European Country Network Model  
Variable name Wave 1 Wave 2 Wave 3  Wave 4 
gamma = 0.10; theta = 0.90 Greece    
gamma = 0.10; theta = 0.95 Greece, Italy, 

Sweden, U.K. 
France Switzerland 

  
gamma = 0.15; theta = 0.90 Greece    
gamma = 0.15; theta = 0.95 Greece, Italy, 

Sweden, U.K. 
France, Spain, 
Switzerland 

Germany, 
Netherlands 

Austria, Finland 

gamma = 0.20; theta = 0.90 Greece       
gamma = 0.20; theta =0.95 Greece, Italy, 

Sweden, U.K. 
France, Spain, 
Switzerland 

Germany, 
Netherlands 

Austria, 
Belgium, 
Finland 

gamma = 0.25; theta = 0.90 Greece    
gamma = 0.25; theta = 0.95 Greece, Italy, 

Sweden, U.K. 
France, Spain, 
Switzerland 

Finland, Germany, 
Netherlands 

Austria, 
Belgium, 
Portugal 

gamma = 0.30; theta = 0.90 Greece    
gamma = 0.30; theta = 0.95 Greece, Italy, 

Sweden, U.K. 
France, Germany, 
Netherlands, Spain, 
Switzerland 

Austria, Belgium, 
Finland, Portugal 

  
gamma = 0.35; theta = 0.90 Greece    
gamma = 0.35; theta = 0.95 Greece, Italy, 

Sweden, U.K. 
France, Germany, 
Netherlands, Spain, 
Switzerland 

Austria, Belgium, 
Finland, Portugal 

  
gamma = 0.40; theta = 0.95 Greece, Italy, 

Sweden, U.K. 
France, Germany, 
Netherlands, Spain, 
Switzerland 

Austria, Belgium, 
Finland, Portugal 

  
gamma = 0.45; theta = 0.95 Greece, Italy, 

Sweden, U.K. 
France, Germany, 
Netherlands, Spain, 
Switzerland 

Austria, Belgium, 
Finland, Portugal 

  
gamma = 0.50; theta = 0.95 Greece, 

Sweden, U.K. 
France, Germany, 
Italy, Netherlands, 
Spain, Switzerland 

Austria, Belgium, 
Finland, Portugal 

  
Note: gamma stands for cross-holdings ratio; theta stands for threshold 
Source: Network model estimation  
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Table 1B. Nominal GDP and Debt Exposures (Mil. US$) 
      

Country GDP Ratio 
(2019/2014) 

Debt/GDP 
(2019) 

Avg. Debt 
(2019) 

Avg. Credit 
(2019) 

Net 
Deficit 
(2019) 

 
Austria 1% 2%      7,646         8,267  621  

Belgium 0% 4%      21,857         7,408  -14450  

Finland -2% 3%      8,931         2,718  -6213  

France  -5% 2%      64,244       103,250  39006  

Germany -1% 2%      72,480        69,782  -2697  

Greece -11% 1%      2,274         1,936  -338  

Ireland 50% 5%      20,709         5,636  -15073  

Italy -7% 2%      43,374        34,018  -9356  

Netherlands 2% 3%      29,868        40,511  10643  

Portugal 4% 5%      12,277         3,291  -8986  

Spain 2% 2%      27,935        66,493  38558  

Sweden -9% 1%      7,478        10,770  3292  

Switzerland -1% 3%      19,436        31,005  11570  

U.K. -8% 4%     102,157        55,580  -46577  

Source: Author’s estimation based on World Development Indicators (WDI), Bank for 
International Settlements (BIS) 
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Table 2. Twenty-Four Countries’ Network Model Output 

Variable Name Wave 1 Wave 2 Wave 3 
gamma = 0.10; Theta = 0.80 Brazil   
gamma = 0.10; Theta = 0.85 Brazil, Turkey 

  

gamma = 0.10; Theta = 0.90 Brazil, Greece, Turkey   
gamma = 0.10; Theta = 0.95 Brazil, Greece, Italy, Sweden, Turkey France Spain, U.K. 
gamma = 0.50; Theta = 0.80 Brazil   

 

gamma = 0.50; Theta = 0.85 Brazil, Turkey 
  

gamma = 0.50; Theta = 0.90 Brazil, Turkey 
 

 
gamma = 0.50; Theta = 0.95 Brazil, Greece, Turkey     
Source: Network model output; Note: gamma stands for cross-holdings ratio; theta stands for threshold 
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Table 3.  Long-Term Steady State Debt Exposure Share  

No. Name Share (%) No. Name Share (%) 
1 France*  0.2145 1 France 0.1497 
2 Germany* 0.1691 2 U.S. 0.1450 
3 U.K.* 0.1493 3 U.K. 0.1311 
4 Spain* 0.1192 4 Japan 0.1209 
5 Italy* 0.1000 5 German 0.1030 
6 Netherlands* 0.0965 6 Spain 0.0694 
7 Switzerland* 0.0640 7 Netherlands 0.0578 
8 Austria* 0.0204 8 Canada 0.0530 
9 Belgium* 0.0190 9 Italy 0.0505 
10 Sweden* 0.0166 10 Switzerland 0.0477 
11 Ireland 0.0102 11 Australia 0.0170 
12 Portugal* 0.0102 12 Austria 0.0100 
13 Finland* 0.0068 13 Belgium 0.0098 
14 Greece* 0.0041 14 Sweden 0.0096 
   15 Ireland 0.0057 
   16 Portugal 0.0050 
   17 Korea 0.0044 
   18 Finland 0.0036 
   19 Brazil* 0.0028 
   20 Greece* 0.0020 
   21 Turkey* 0.0008 
   22 Chile 0.0005 
   23 Panama 0.0005 
      24 Mexico 0.0002 
Source: Author’s Markov process model output 
 
Note: Network model Markov process output from scenario 2 and scenario 3. * 
stands for countries that ultimately fail  
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Table 4. Debt Cost between Benchmark and Shortest Path Scenario (Mil. US$) 
From/To Scenario A B C D Shortest Path 
A Benchmark 0 1097 894 13969  
  Shortest Path 0 1097 894 12818 A-->C (894) -->D (11924) 
B Benchmark 2633 0 1355 241081   
  Shortest Path 2633 0 1355 13279 B-->C (1355) -->D (11924) 
C Benchmark 1494 798 0 11924   
  Shortest Path 1494 798 0 11924   
D Benchmark 13929 18755 10091 0  
 Shortest Path 11585 10889 10091 0 D-->C (10091) -->A (1494) 
  Shortest Path     D-->C (10091) -->B (798) 
Source: Author's shortest path model output 
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