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Abstract  

Models abound that analyze changes in credit quality. These models are designed to 
determine the reserves and capital needed to support the risks of individual credits as well as 
portfolios of credit instruments. Historical information on the transition of credit exposures 
from one quality level, or rating, to another is often used to estimate models that describe the 
probabilistic evolution of credit quality. A popular specification is the simple, time-
homogeneous Markov model. While the Markov specification cannot describe credit 
processes in the long run, it may be useful for describing short-run changes in portfolio risk. 
In this convenient specification, the entire stochastic process can be characterized in terms of 
estimated transition probabilities. However, the simple homogeneous Markovian transition 
framework is restrictive. We propose a simple test of the null hypotheses of time-
homogeneity that can be performed on the sorts of data often reported. The test is applied to 
data sets on municipal bonds, commercial paper, and sovereign debt. We find that municipal 
bond ratings transitions are adequately described by the Markov model for up to five years, 
that commercial paper on a 30-day transition scale seems Markovian up to six months (the 
extent of the available data), and that the transitions of sovereign debt ratings are adequately 
described by the Markov model (a result that may derive from the limited data of small 
sample sizes).  

The views expressed in this paper are those of the authors alone, and are not 
necessarily those of the Office of the Comptroller of the Currency or the Department 
of the Treasury. Nicholas M. Kiefer is a Professor in the Departments of Economics 
and Statistical Sciences, Cornell University, Uris Hall, Ithaca, NY 14853. C. Erik 
Larson is a Senior Financial Economist in the Office of the Comptroller of the 
Currency’s Risk Analysis Division, Washington, DC 20219.  
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Testing Simple Markov Structures for Credit Rating Transitions 

Nicholas M. Kiefer 

C. Erik Larson 

Introduction 

Models abound that analyze changes in credit risk. The ultimate aim of these models is to 

determine the reserves and capital needed to support the risks of not only individual credits but also 

portfolios of credit instruments. Credit quality is increasingly denoted by one or more ratings that 

summarize, over some specified horizon, a credit's probability of default, rate of loss given default, 

or both. For example, the proposed Basel II agreement (2004) requires institutions to rate assets by 

their one-year probability of default and by their expected loss severity given default. 

Banks, supervisors, and other institutions rely upon these systems to produce accurate, stable 

representations of the risks of credit loss for current and future populations of similar credit 

exposures. Financial institutions use this information in portfolio selection. Historical information 

on the transition of credit exposures from one quality level or rating to another is used to estimate 

various models that describe the probabilistic evolution of credit quality. 

A popular specification is the simple, time-homogeneous Markov model.  With this specification, 

the stochastic processes can be specified completely in terms of transition probabilities.  These 

correspond nicely to summary data that are often available and reported (though not without 

problems, as we note below).  In particular, details on the history of individual assets are not 

required under this specification. Suppose we accept the simple Markov chain specification for 

describing credit rating transitions. Is there anything we can say about how to check the simple 

Markov structure using the sort of summary data that are commonly published (i.e., the transition 

tables for one, two, and five years for rated corporate bonds)?  Important restrictions on credit 
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ratings transitions are implied by the simple Markov specification, and these restrictions suggest 

methods by which specification tests of the model can be made. 

Given the relative ease with which the simple Markov model can be estimated or manipulated, it is 

not surprising that several practitioners have embedded the Markov framework into their credit 

quality tracking and risk assessment/management models.  However, the adoption of the simple 

Markovian transition framework is not without cost; restrictive assumptions on the nature of credit 

transitions are required for the validity of this simple model.  In fact, many of these assumptions are 

unrealistic, and are likely to be violated by the types of credit transitions considered by 

practitioners.  Therefore, it would appear that a diagnostic test for the validity of the simple Markov 

chain model specification would be a valuable tool to add to the credit risk modeler's toolkit. In the 

next section, we illustrate how such a test can be constructed, and we discuss its statistical 

properties. 

We consider testing time-homogeneity. This is not required by the general Markov specification, 

but seems to be a featured assumption in practice (and is an assumption that makes much empirical 

work possible!). Time-homogeneity means that the transition matrix P whose ijth element is the 

probability that a loan is in state j next period given that it is in I this period, is constant over time. 

This is a strong assumption. For example it might be thought that these transition probabilities 

would depend on macroeconomic conditions, or conditions specific to the industrial sector of the 

loan. Time-homogeneity is sometimes referred to as the property of having “stationary transition 

probabilities.” This is probably bad terminology, as it may be confused with stationarity of the 

stochastic process determined by these transition probabilities. Markov chains are not usually 

stationary, in the sense that the joint distribution of N successive observations may be different 

depending on where the N are taken. Nevertheless, a test for time homogeneity of ratings 

transitions is one diagnostic test that can be used to evaluate the adequacy of the simple Markov 

specification. 

This paper proceeds as follows: section two introduces the simple Markov chain model, and 

describes how its parameters might be estimated with the sorts of data frequently available. Section 

three then develops a test of the null hypotheses of time-homogeneity that is implied by the simple 
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Markov specification. Before proceeding, it is useful to put the goals in perspective.  First, credit 

rating transitions cannot “really” be Markovian.  To see this, note that a key probability is the 

transition into default. Default is an absorbing state in any sensible specification. If changes in 

credit ratings could be strictly described as an absorbing Markovian system, all assets would 

eventually be in default. This is ridiculous. However, this is not the issue.  The issue instead is 

whether the Markovian specification adequately describes credit rating transitions over rather short 

periods. Our test will allow researchers to determine which assets display Markovian 

characteristics and over what periods. 

The Markov Chain Model 

One relatively simple probability model for ratings transitions that is increasingly being used by 

financial practitioners is the Markov chain model. In the simple, discrete Markov chain model, the 

states that a stochastic process Xt may occupy at (discrete) time t form a countable or finite set.  It 

is convenient to label the states by the positive integers.  We will denote the number of unique 

states in a finite-dimensioned Markov chain by the integer K. The probability of Xt+1= j, given that 

Xt = i, called a one-step transition probability, is denoted pij(t). This representation emphasizes that 

transition probabilities in general will be functions of both the initial and the final states, and the 

time of transition.  When the transition probabilities are independent of the time variable (the usual 

case in financial applications), the Markov process is said to have stationary transition probabilities. 

In this case we may write pij(t) = pij. It is common to organize the transition probabilities among all 

states into a transition matrix of the form 

⎡
 p11 p12 Kp1 

p21 p22 Kp2 

Kp 1 Kp 2 KKp 

⎤ 
⎢
⎢
⎢⎣ 

⎥
⎥
⎥⎦ 

P
=
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Note that for each row, the sum of transition probabilities will be required to equal one, ∑K
j=1pij = 1. 

This is because the state must either remain unchanged (with probability pii), or move to one of the 

alternative states. 

When all possible states for the Markov process are similarly organized in a vector X, the equation 

describing the probabilistic evolution of the Markov process across states can be represented as: 

Xt+1 =  XtP 

The simplicity of this last equation explains why the simple Markov chain model has proven so 

attractive to those seeking to describe the ratings transition behavior of credit.  Note the 

interpretations possible:  If Xt identifies the risk category of a single asset, for example Xt = 

(0,0,1,0 …,0), say, indicating the asset is in the third risk group, then Xt+1 = (p31,p32,…,p3K) is the 

probability distribution across risk states in time t+1 for an asset in risk state 3 at time t.  

Alternatively, if Xt is itself the distribution of assets across risk categories at time t, then Xt+1 is the 

corresponding distribution in time t+1.  The same probabilistic framework applies to single assets 

and the portfolio as a whole. 

In the non-homogeneous case the transition probability matrix should be indexed by t, Pt and the 

transition equation is Xt+1 = XtPt. In this case the model remains Markovian in that the distribution 

across states in the next period depends only on the distribution in the current period (and not on 

the distributions in previous periods).  That is, the transitions are memoryless.  History does not 

matter given the current state.  In the credit ratings context, this result is equivalent to saying that 

given a credit's current rating, the likelihood that the credit will move to any other rating level, or 

that it will keep its current one, is independent of its past ratings history.  While an interesting 

characteristic of Markovian transitions, this property seems to run against the widely held view that 

actual credit ratings changes exhibit "momentum."  Conditional on the current rating level, a future 

credit downgrade is perhaps more likely if the credit had experienced a downgrade in the previous 

period than if it had experienced an upgrade or no change in rating; see, for example Carty and 

Fons (1993) or Bangia, Diebold, Kronimus, Schagen, and Schuermann (2002). 
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Consider obtaining the distribution across states in period t+2, given the distribution in period t.  By 

substitution, 

Xt+2 = Xt+1P = XtP2 

in the time-homogeneous case.  In general, Xt+m = XtPm. In the non-homogeneous case we have  

Xt+2 = Xt+1Pt+1= XtPtPt+1 

and Xt+m = XtPtPt+1… Pt+m-1. 

Estimation of Markov Chain Transition Parameters 

Estimation of the transition probabilities in a simple Markov chain can be carried out in a 

straightforward manner by counting the number of changes from one state to another that occur 

during a specified sample period. The estimation and inference problem here is classical; leading 

early papers are Anderson and Goodman (1957), Billingsley (1961), and the application-focused 

paper Chatfeld (1973). We can for demonstrative purposes consider a simple two-state chain, 

which in our applied context might have credit quality states labeled low-risk and high-risk.  For 

simplicity in this discussion, we do not include an absorbing state. 

We will specify the single-period transition matrix as 

⎢
⎣ 

p 111 

1 
−
p11⎡
 ⎤


P
=
 ⎥
⎦− p22 p22 

Let nij be the number of times, in a sample of size N that there is a move from state i to state j.  The 

log-likelihood function for the collected data under the assumed Markov representation is then 

given by 

ln (P L |1−
 data period ) =
n11 ln p11 +
n12 1ln( −
p11 )
+
n21 1ln( −
p22 )
+
n22 ln p22 
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Maximization of this function with respect to the unknown parameters p11 and p22 in this case 

yields closed form solutions for the maximum-likelihood estimators.  These estimates are given by 

p̂11 = n11 /(n + n12 ), p̂ 22 = n22 /(n + n21 )11 22 

These estimators and their obvious generalizations to the K-state case are appropriate when we 

observe one-step transitions. 

Suppose we have data on two-period transitions, and we wish to estimate p11 and p22, the one-

period transition probabilities in a time-homogeneous Markov chain.  First, note that the two-period 

transition probabilities, denoted p11(2) and p22(2), are each functions of the underlying one-period 

transition probabilities through the relation P(2) = P2. Specifically, 

2⎡ p11 (2) 1 − p11 (2)⎤ 
= ⎢
⎡ p11 + (1− p 1)( − p ) 1 − ... ⎤11 22

⎢P(2) =
⎣1 − p22 (2) p22 (2) ⎦

⎥
⎣ 1 − ... p 2 + (1− p 1)( − p22 )⎦

⎥ 
22 11 

Letting n11(2) be the number of observations remaining in state 1 for two periods, n12(2) the number 

moving from 1 to 2, etc., the loglikelihood for estimating p11 and p22 from two-period transition 

data is 

ln P L | 2 − data period ) = n (2) ln p (2) + n (2) 1ln( − p ( )) 2 + n (2) 1ln( − p ( ))2 + n (2) ln p (2)( 11 11 12 11 21 22 22 22 

where of course the pij(2) are defined above in terms of the pij. At this point we note that 

maximizing this loglikelihood with respect to the pij(2) is easy, leading to the obvious estimators in 

terms of the sample fractions.  This will be useful shortly.  When one-period and two-period data 

are available, the total likelihood is the sum of the loglikelihoods 

(ln P L | 2 & 1 − data period ) = n ln p + n12 1ln( − p ) + n 1ln( − p ) + n ln p11 11 11 21 22 22 22 

+ n11 (2) ln p (2) + n (2) 1ln( − p ( ))2 + n (2) 1ln( − p ( ))2 + n (2) ln p (2)11 12 11 21 22 22 22 
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which should be maximized with respect to pij. Extension to more than two periods and more than 

two states is immediate. While the lack of data at the intervening period might at first seem 

strange, it is actually a very common feature of ratings data.  For instance, published ratings might 

be produced only annually, while the credit risk modeler might believe the Markov transition 

process to have a monthly or quarterly frequency. Alternately, the modeler might think that the 

Markov transition process has an annual frequency, but only cumulative transition data over a 

multi-year period is available for analysis.   

The basic parameters are the separate one-period transition matrices P1, P2, up to PT, where T is the 

longest time length for which transitions are observed.  Note that this does not correspond directly 

to the way in which the data are observed. Observed, typically, are one-period, two-period, up to 

perhaps 15-period transitions.  These are quite different from one-period transitions observed at 

time 1, time 2, up to time 15.  When multiple single-period transitions are observed, the above 

methods can be used to estimate period-specific parameters, and a chi-squared statistic can be 

formed to test the equality of parameters across periods.  This is explored by Anderson and 

Goodman, and treated recently in the credit transition application by Thomas, Edelman and Crook 

(2002). 

In our setting, when the summary statistics consist of multiple-period transition information, the 

problem is simplified by a reparametrization to the multiple-period transition probabilities. Of 

course these depend on the same underlying parameters P1 through PT. This dependence is 

complicated, since the t-step transition data nij(t) depend on the t-step transition matrix, which is 

P1P2…Pt-1. For our purposes, however, separate estimates of the Pt are not really needed.  What is 

needed is the maximized value of the loglikelihood function.  This is easily obtained by 

reparametrizing to P(1)=P1, P(2) = P1P2, P(3) = P1P2P3, etc. The loglikelihood is easily maximized 

with respect to these new parameters.  Indeed the MLE’s are simply 

p̂ ij (t) = nij (t) / (t) .∑k

K 

=1 
nik 
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Solving for the underlying time-dependent one-step transition probabilities is difficult but 

unnecessary. The maximized value of the loglikelihood is clearly identical, whether parametrized 

in terms of the P(t) or the Pt. 

In the application to ratings transitions, the worst state is the absorbing state, default.  With the 

convention that state 1 is the best (AAA in S&P and Fitch, Aaa in Moody’s, etc.) and state K the 

worst, we have that the Kth row of P is (0,0,…,1); there are no transitions out of default.  Thus, a K 

x K transition matrix has (K-1)2 parameters.  One row is known, and one column is restricted since 

the row sums are one. There are other restrictions as well (pij ∈ [0,1]) which make a 

reparametrization convenient before maximization.  The point is that the number of parameters is 

not unduly large in practical applications and it does not increase with the number of periods 

available in the time-homogeneous case.   

The Likelihood Ratio Test 

We are now in a position to test for the hypothesis that the transition data are generated by a time-

homogeneous Markov chain.  To test, we will use a likelihood ratio statistic that compares the 

restricted likelihood computed under the null that the transitions are generated by a time-

homogeneous Markov chain, with an alternative likelihood for the observed transitions computed 

without imposing the homogeneity restrictions. The statistic is computed as –2lnLR, where  

( | ( (ln LR = ln max data all P L ) − max ln P L ( ),...,1 T P ) | data all )
(P P( ),...,1 T P ) 

Using standard arguments, this statistic is asymptotically χ2(q), where the degrees of freedom q is 

the number of restrictions imposed.  Suppose there are K states and transitions 1, 2, through T 

periods. Then the restricted model has (K-1)2 parameters, as we have seen, and the unrestricted 

model has T(K-1)2 parameters.  Hence q = (T-1)(K-1)2. 

Computation of the unrestricted maximized loglikelihood is trivial, as closed form solutions exist.  

Computation of the restricted MLE is a little more difficult when multiperiod transitions are 

available. We have found it useful to reparametrize with a logit transform to new parameters  
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α ij = exp( pij ) / K exp( pij )∑ j=1 

and to maximize numerically with respect to the (K-1)2 “free” parameters αij. This is a fairly easy 

maximization using any of many available software packages.  Convenient starting values are 

provided by the logit transforms of the sample fractions making up the 1-period transition data.  

Finally, we rule out zeros among the transition probabilities, taking the position that no transition, 

however unlikely, is really impossible.  To this end, we bound the estimated transition probabilities 

from below by 10-10. 

As the likelihood ratio test against the general class of non-time homogeneous models, the statistic 

can be expected to have maximum local power against this broad class of alternatives.  As usual, 

more power can be achieved if the class of alternatives is further restricted, but this seems of little 

interest. It is useful to consider whether the test has power against other departures from the time-

homogeneous Markov model.  Departures of interest include alternatives with more dependence 

than the Markov specification allows. For example, does next period’s distribution of assets across 

risk categories depend not only on the current distribution but on previous distributions as well?  If 

so, the process is not Markovian. Our test will have power against these alternatives if these 

processes can be better approximated by a time-inhomogeneous process than by a time-

homogeneous process.  While no proof is provided, this property certainly seems likely, so it can be 

expected that our test has power against a fairly broad class of alternatives to the time-

homogeneous Markov specification.   

Data and Applications 

While several institutions have their own historical data and ratings assignments with which to 

estimate Markov transition models, several alternative sources exist from which credit rating 

transition matrices might be obtained.  Transition matrices are regularly published by the major 

rating agencies, including Moody's and Standard and Poor's; they are also available from risk 

management consulting companies and vendors of credit risk models including RiskMetrics, KMV, 

and Kamakura, Inc.  Unfortunately, reporting standards in this area are fairly lax.  Often, transition 
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fractions are reported with no indication of the size of the underlying data set, or the initial 

distribution of assets across risk categories.  Since many of these transitions are low-probability 

events, large samples are necessary for precise estimation.  This information should be routinely 

provided as a matter of sound statistical practice. 

We have assembled several data sets with which to illustrate our technique and demonstrate its 

usefulness. These are: 

1. Municipal Bonds 

These data are from a well-known Standard and Poor’s study published on the web 

(Standard & Poor’s, 2001). This data set contains information on rating transitions of 

municipal bonds through eight rating categories and a nonrated category from 1986 through 

2000. Average one-year, two-year, and through 15-year transition matrices are reported.    

This is a rare study that gives sufficient detail to be realistically useful.  We have run tests 

based on the one-year and two-year data, the one-, two-, and three-year data, and so on up 

to the full data set including one-, two-, …up to 15-year transitions.  Results are shown in 

Table 1. We see here that the Markov specification is adequate for describing annual 

ratings transitions for periods up to about five years.  The model is fairly reliable for one-, 

two-, three-, and even four-year transitions, but begins to fail when looking more than 5 

years out. The implication for practice is that municipal bond rating transitions can over 

reasonable periods be described by a simple time-homogeneous model, but the transition 

probabilities should probably be updated, and the new ones used, every few years. 
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   Table 1: Municipal Bonds  1986-2000 
Transitions LR Statistic DF Pr(X^2> LR) 

1,2 42.96 49 0.715 
1,2,3 92.33 98 0.642 
1 to 4 154.2 147 0.327 
1 to 5 237.6 196 0.022 
1 to 6 373.9 245 2.07E-07 
1 to 7 526.8 294 2.00E-15 
1 to 8 714.7 343 0 
1 to 9 972.6 392 0 
1 to 10 1107 441 0 
1 to 11 1567 490 0 
1 to 12 2056 539 0 
1 to 13 2490 588 0 
1 to 14 2866 637 0 
1 to 15 3177 686 0 

Calculations based on Standard & Poor's (2001) 

2. Commercial Paper 

These data are from a study by Moody’s (2000).  This study is also commendable in the 

detail provided. Commercial paper defaults are extremely rare, although there is some 

migration among rating categories (here P-1, P-2, P-3, and NP; P is for prime).  Moody’s 

goal is that commercial paper with any prime rating should never default.  Since 

commercial paper, in contrast to the municipals studied above, are short-term assets, the 

transitions examined are 30-day transitions.  The Moody’s study reports transitions over 30, 

60, 90, 120, 180, 270 and 365 days. Note that the “missing” powers of P at 150, 210, 240, 

300, and 330 days present no problem for our methods.  The data up to the 180-day 

transitions exhibit expected patterns— for example, the transitions into default (and 

generally transitions out of the initial state) increase with the length of the time span.   

However, for 270 and 365 days, the transitions from NP into default are zero.  This appears 

problematic and is perhaps due to definitions Moody’s has used and the fact that 

commercial paper is rarely extended for long periods.  We have chosen simply not to use 

the data for 270 and 365 days. Another question arises as to the treatment of Moody’s 
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category WR – withdrawn.  These withdrawals occur because commercial paper is not 

rolled over, so the asset size becomes negligible, or the market has otherwise lost interest in 

the offering. It is apparently not a synonym for default or a decline in creditworthiness. 

Consequently, we treat these as censored. Again, to illustrate the use of the test, we 

calculate the statistic based on increasing numbers of periods.  Results are given in Table 2. 

Table 2: Commercial Paper 1972-1999 
Transitions Chi-Square DF P-value 

1,2 14.95 16 0.529 
1,2,3 18.83 32 0.969 
1.2.3.4 23.78 48 0.999 
1 to 4, 6 

Calculations based on Moody's (2000) 

There is no serious evidence against the Markov specification.  Recall that the time scale 

here is 30 days; commercial paper is generally short lived.  The Markov model “works” 

over the period available (six months).  Six months is probably also the relevant period for 

applications.  Note that the sample size here is enormous, so these results are fairly firm.  

For a different interpretation of the failure to reject, see our next discussion on sovereign 

debt. 

3. Sovereign Debt 

These data are from Standard & Poor’s (2003).  Again, suitable detail is provided.  Here, it 

appears that overlapping cohorts were used to calculate the transition matrices. For 

example, in a sample of 15 years, there is 1 15 year cohort, 2 14, 3 15, etc. Transitions 

among eight rating categories including default are recorded.  In the case of sovereign debt, 

default must be defined particularly carefully, because some of the debt to preferred 

creditors is often serviced after default.  S&P discusses this complication in appendix 2 of 

its update on defaults. One-, three-, five-, and seven-year transition rates are reported.  Our 

results are reported in Table 3. 
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Table 3: Sovereign Debt 1975-2002 
Transitions Chi-Square DF P-value 

1,3 17.33 49 1.0000 
1,3,5 44.32 98 1.0000 
1,3,5,7 85.14 147 1.0000 

Calculations based on Standard & Poor's (2003) 

There is simply no rejecting the time-homogeneous Markovian specification.  It should be 

noted that the sample sizes are relatively small here (all well under 100), and this is perhaps 

driving the result. Nevertheless, it is doubtful that a more complicated model would be 

supported by the data. 

There are many other studies reporting and discussing transition rates among risk ratings.  We 

make no claim to have uncovered even a small fraction of the competent studies.  Unfortunately, 

many studies do not report sufficient information for the reader to calculate sample sizes.  This is 

poor statistical reporting, and readers should naturally treat such reports with some skepticism. 

Ratings changes do not occur often and some are very rare.  Thus, the transition rates reported are 

essentially estimators of very small probabilities.  The sampling standard error of an estimator p̂ of 

a binomial probability p is approximately (p(1-p)/n)1/2. With p = 0.0002, say, the standard error of 

the estimator (with expected value 0.0002) at a sample size n=1000 is 0.00045, more than twice the 

expected value of the estimator.  It is not until n=5000 that the standard error is even equal to the 

expected value of the estimator.  Thus, large sample sizes are required for precise estimation of 

small (or large) probabilities.  This fact probably explains the failure to reject time homogeneity in 

the case of sovereign debt. For such debt, sample sizes are less than 100 and many transitions are 

low-probability events.  No test can be expected to have much power.  This is however, essentially 

the correct inference. The lack of data because of small sample sizes suggests that richer models 

cannot be supported. 
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Conclusions 

The time-homogeneous Markov model for transitions among risk categories is widely used in areas 

from portfolio management to bank supervision and risk management.  It is well-known that these 

models can be overly simple as descriptions of the stochastic processes for riskiness of assets.  

Nevertheless, the model’s simplicity is extremely appealing.  We propose a likelihood ratio test for 

the hypothesis of time-homogeneity.  Because reparametrization is convenient, the test is simple to 

compute, requiring numerical estimation of only the restricted model, a (K-1)2-parameter problem 

where K is the number of risk categories.  The test can be based on summary data often reported by 

rating agencies or collected within banks.  We recommend that the test be interpreted as 

determining whether or not transitions over particular periods can be adequately modeled as 

Markov chains. (We do not recommend using the test to determine whether the underlying process 

is Markovian.  It is not: the prediction would be that everything eventually defaults.)   

We believe that some transitions can be usefully modeled as Markovian for several years. For 

example, municipal bond ratings can be adequately described as time-homogeneous Markovian on 

an annual scale over as much as five years. For transitions over a longer period, a different model 

should be used. As a practical matter, we conclude simply that the estimated transition matrix be 

updated regularly and then used to forecast for up to five years.  For a sample of commercial paper 

obligations on a 30-day time scale, we find that the time-homogeneous Markov model adequately 

describes transitions for at least six periods (the length of our available data).  This result is fairly 

firm, as the data set involved is large, though of course rating transitions over 30-day periods are 

rare. In an application to sovereign debt with transitions on an annual scale, we cannot reject the 

Markov specification, but qualify this result heavily because the sample sizes are small.  That is, 

the data do not indicate that the Markov model can be improved, but they do not indicate that it 

works very well either; there is simply very little information on these rare transitions. 
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